domingo, 31 de março de 2019





x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



:
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


 
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

 para uma funções  e g dada.
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

S

x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
onde ux é du/dx. Na ausência de trabalho realizado, uma alteração na energia interna por unidade de volume no material, ΔQ, é proporcional à alteração na temperatura, Δu. Isto é,
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
onde cp é a capacidade térmica específica e ρ é a densidade de massa do material. Escolhendo-se energia em temperatura zero absoluto, isto pode ser reescrito como
.
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
O aumento da energia interna em uma pequena região espacial do material
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


durante o período de tempo
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


é dado por[nota 1]
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

onde o teorema fundamental do cálculo foi utilizado. Além disso, sem trabalho realizado e sem quaisquer fontes de calor ou escapes, a variação da energia interna no intervalo [xxxx] é contabilizado integralmente pelo fluxo de calor através das fronteiras. Pela lei de Fourier, este é
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

novamente pelo teorema fundamental do cálculo.[nota 2] Pela conservação da energia,
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

Isto é verdadeiro para qualquer retângulo [t−Δttt] × [x−Δxxx]. Consequentemente, o integrando deve desaparecer de forma idêntica:
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Que pode ser reescrita como:
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
ou:
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

que é a equação do calor. O coeficiente k/(cpρ) é chamada difusividade térmica e é frequentemente notada como α.


x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
onde u = u(xt) é uma função de duas variáveis x e t. Aqui
  • x é a variável espacial, então x ∈ [0,L], onde L é o comprimento da barra.
  • t é a variável tempo, então t ≥ 0.
Assume-se a condição inicial
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


onde a função f é dada e as condições de contorno
.
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Tenta-se encontrar uma solução de (1) que não é identicamente zero que satisfaça as condições de contorno (3) mas com a seguinte propriedade: u é um produto em que a dependência u em xt é separada, que é:
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Esta solução técnica é chamada separação de variáveis. Substituindo u novamente na equação (1),
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Dado que o lado direito depende somente de x e que o lado esquerdo somente de t, ambos os lados são iguais a algum valor constante − λ. Então:
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
e
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



Apresentam-se agora soluções para (6) para valores de λ ≤ 0 que não podem ocorrer:
  1. Supondo-se que λ > 0. Então existem números reais BC tais que
    De (3) tem-se
    e pontanto B = 0 = C o que implica que u é identicamente 0.
  2. Supondo-se que λ = 0. Então existem números reais B e C tais que
    Da equação (3) conclui-se da mesma maneira que em (1) que u é identicamente 0.
  3. Portanto, deve ser o caso em que λ < 0. Então existem números reais ABC tais que
    e
    De (3) tem-se C = 0 e que para algum inteiro positivo n,
Isso resolve a equação do calor, no caso especial que a dependência de u tem a forma especial (4).
Em geral, a soma de soluções para (1) as quais satisfazem as condições de contorno (3) também satisfazem (1) e (3). Pode-se mostrar que a solução para (1), (2) e (3) é dada por
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


onde
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D









Em física, a equação do calor é um modelo matemático para a difusão de calor em sólidos. Este modelo consiste em um equação de derivadas parciais que muitas vezes é também chamada de equação da difusão (térmica).
A equação do calor prediz que se um corpo a uma temperatura T é submerso em um recipiente com água a menor temperatura, a temperatura do corpo diminuirá, e finalmente (teoricamente depois de um tempo infinito, e sempre que não existam fontes de calor externas) a temperatura do corpo e a da água serão iguais (estarão em equilíbrio térmico).
Existem diversas variações da equação do calor. Na sua forma mais conhecida, ela modela a condução de calor em um sólido homogêneoisotrópico e que não possua fontes de calor, e é escrita:
Aqui,  representa o campo de temperaturas e é a função incógnita.  é o coeficiente de difusão térmica.
Na presença de fontes de calor, a equação toma a seguinte forma:
A equação do calor é de uma importância fundamental em numerosos e diversos campos da ciência. Na matemática, são as equações parabólicas em derivadas parciais por antonomásia. Na estatística, a equação do calor está vinculada com o estudo do movimento brownianoatravés da equação de Fokker–Planck. A equação de difusão, é uma versão mais geral da equação do calor, e relaciona-se principalmente com o estudo de processos de difusão química.

A equação do calor costuma ser escrita usando a notação de operadores diferenciais:
O operador  também é escrito  e é conhecido como Laplaciano.

Descrição geral[editar | editar código-fonte]

Suponha que tendo-se uma função u a qual descreve a temperatura em uma determinada posição (xyz). Esta função irá alterar-se com o tempo na medida em que o calor se dissipa através do espaço. A equação do calor é usada para determinar a alteração na função u no tempo. A imagem acima é animada e tem uma descrição das alterações do trajeto do calor ao longo do tempo numa barra de metal. Uma das interessantes propriedades da equação do calor é o princípio do máximo o qual afirma que o valor máximo de useja anterior no tempo que a região de interesse ou na borda da região de interesse. Isto é, essencialmente, afirmar que a temperatura vem tanto de uma fonte ou de anteriores, no tempo, porque permeia calor, mas não é criado do nada. Esta é uma propriedade das equações diferenciais parciais parabólicas e não é difícil de provar-se matematicamente (ver abaixo).
Outra interessante propriedade e que tanto se u tem uma descontinuidade em um tempo inicial t = t0, a temperatura torna-se de perfil suave (derivável) assim que t > t0. Por exemplo, se uma barra de metal tem temperatura 0 e outra tem temperatura 100 e elas estão colocadas juntas uma na ponta da outra, então muito rapidamente a temperatura no ponto de conexão é 50 e o gráfico da temperatura é suavizado ao longo de 0 a 100.
A equação do calor é usado em probabilidade e descreve passeios aleatórios. É também aplicada em matemática financeira por esta razão.
É também importante em geometria Riemanniana e, portanto, topologia: foi adaptada por Richard Hamilton quando definiu o fluxo de Ricci que foi posteriormente usado por Grigori Perelman para resolver a conjectura de Poincaré topológica.

Condições de contorno[editar | editar código-fonte]

equação do calor na maioria das aplicações é definida em uma região limitada  e é completada com condições no contorno  desta região. As três condições de contorno mais freqüêntemente estudadas são:
 para uma função g dada.
 para uma função g dada.
  • Condição de contorno mista: A taxa de calor conduzido através da fronteira é proporcional à diferença de temperatura na fronteira com relação a temperatura dada.
 para uma funções  e g dada.

Situação estacionária[editar | editar código-fonte]

O estado estacionário da equação do calor acontece quando a temperatura não varia no tempo, ou seja:
Neste caso, a equação se reduz à equação de Laplace:

Calor total[editar | editar código-fonte]

calor total contido em uma região  está relacionado com a integral:
Podemos encontrar uma expressão para a variação do calor total, diferenciando esta expressão no tempo:
usando o teorema de Gauss, temos:
Aqui,  é o vetor unirário normal apontando para fora da supefície e  é o elemento de superfície.

O problema físico e a equação[editar | editar código-fonte]

Derivação em uma dimensão[editar | editar código-fonte]

A equação do calor é derivada da lei de Fourier e da conservação da energia.[1]
Pela lei de Fourier, a taxa de fluxo de energia térmica através de uma superfície é proporcional ao gradiente negativo da temperatura através da superfície,
onde k é a condutividade térmica e u é a temperatura. Em uma dimensão, o gradiente é uma derivada ordinária espacial, e então a lei de Fourier é
onde ux é du/dx. Na ausência de trabalho realizado, uma alteração na energia interna por unidade de volume no material, ΔQ, é proporcional à alteração na temperatura, Δu. Isto é,
onde cp é a capacidade térmica específica e ρ é a densidade de massa do material. Escolhendo-se energia em temperatura zero absoluto, isto pode ser reescrito como
.
O aumento da energia interna em uma pequena região espacial do material
durante o período de tempo
é dado por[nota 1]
onde o teorema fundamental do cálculo foi utilizado. Além disso, sem trabalho realizado e sem quaisquer fontes de calor ou escapes, a variação da energia interna no intervalo [xxxx] é contabilizado integralmente pelo fluxo de calor através das fronteiras. Pela lei de Fourier, este é
novamente pelo teorema fundamental do cálculo.[nota 2] Pela conservação da energia,
Isto é verdadeiro para qualquer retângulo [t−Δttt] × [x−Δxxx]. Consequentemente, o integrando deve desaparecer de forma idêntica:
Que pode ser reescrita como:
ou:
que é a equação do calor. O coeficiente k/(cpρ) é chamada difusividade térmica e é frequentemente notada como α.

Derivação em três dimensões[editar | editar código-fonte]

Representação gráfica da solução a uma dimensão de uma equação do calor diferencial parabólica. (Ver versão animada)
No caso especial de propagação de calor em um meio isotrópico e homogêneo em um espaço tridimensional, esta equação é
onde:
  • u = u(xyzt) é temperatura como uma função do espaço e tempo;
  •  é a taxa de mudança de temperatura em um ponto no tempo;
  • uxxuyy, e uzz são as derivadas segundas espaciais (conduções térmicas) de temperatura nas direções xy, e z, respectivamente;
  •  é a difusividade térmica, uma grandeza específica do material dependendo da condutividade térmicak, a densidade de massa, e a capacidade térmica específica.
A equação do calor é uma consequência da lei de Fourier do resfriamento (ver condução térmica).
Se o meio não é todo o espaço, a fim de resolver a equação do calor excepcionalmente também precisa-se especificar condições de contornopara u. Para determinar a unicidade de soluções em todo o espaço é necessário assumir-se um exponencial vinculado ao crescimento das soluções, esta hipótese é consistente com as experiências observadas.
Soluções da equação do calor são caracterizadas por um nivelamento gradual da distribuição de temperatura inicial do fluxo de calor de áreas mais quentes para mais frias de um objeto. Geralmente, muitos estados diferentes e as condições de partida tenderão ao mesmo equilíbrio termodinâmico estável. Como consequência, inverter-se a solução e concluir-se algo sobre os tempos mais primordiais ou condições iniciais da distribuição de calor presente é muito impreciso, exceto durante os mais curtos dos períodos de tempo.
A equação do calor é o exemplo prototípico de uma equação diferencial parcial parabólica.
Usando o operador de Laplace, a equação do calor pode ser simplificada, e generalizada para equações similares sobre espaços de número arbitrário número de dimensões, como
onde o operador de Laplace, Δ ou , a divergência do gradiente, é tomado nas variáveis espaciais.
A equação do calor governa a difusão térmica, assim como outros processos difusivos, tal como a difusão de partículas ou a propagação do potencial de ação em células nervosas. Embora elas não sejam de natureza difusiva, alguns problemas de mecânica quântica são também governado por um análogo matemático da equação do calor (veja abaixo). Também pode ser usada para modelar fenômeno que surgem em finanças, como os Black-Scholes ou os processos de Ornstein-Uhlenbeck. A equação, e vários análogos não lineares, tem também sido usados em análise de imagens.
A equação do calor é, tecnicamente, uma violação da relatividade especial, porque suas soluções envolvem instantâneas propagações de uma perturbação. A parte da perturbação externa ao cone de luz pode normalmente se seguramente negligenciada, mas se é necessário desenvolver-se uma razoável velocidade para a transmissão do calor, um problema hiperbólico deverá ser também considerado - como uma equação diferencial parcial envolvendo uma derivada em relação ao tempo de segunda ordem.

Geração interna de calor[editar | editar código-fonte]

A função u acima representa a temperatura de um corpo. Alternativamente, se é algumas vezes conveniente mudar-se unidades e representar u como a densidade de calor de um meio. Dado que densidade de calor é proporcional à temperatura em um meio homogêneo, a equação do calor é ainda obtida nas novas unidades.
Supondo-se que um corpo obedeça a equação do calor e, em adição, gere seu próprio calor por unidade de volume (e.g., em watts/L) a um taxa dada pela função conhecida qvariando no espaço e no tempo.[nota 3] Então o calor por unidade de volume u satisfaz uma equação
Por exemplo, um filamento de tungstênio de um bulbo de lâmpada gera calor, por isso teria um valor positivo diferente de zero para  quando ligado. Quando a luz é desligada, o valor de  para o filamento de tungstênio deveria ser zero.

Problemas de aquecimento e arrefecimento[editar | editar código-fonte]

Uma aplicação das equações diferenciais de primeira ordem são os problemas de aquecimento e arrefecimento. Entre dois corpos em contato existe transferência de calor por condução, do corpo mais quente para o mais frio.[2] Se a temperatura do objeto em qualquer instante é  e a temperatura do meio ambiente é , o aumento da temperatura do objeto em qualquer instante será diretamente proporcional à diferença de temperatura com o meio ambiente
onde  é uma constante de condução térmica. Esta equação é uma equação linear que pode ser facilmente resolvida uma vez conhecida a temperatura do meio . O caso mais simples é quando a temperatura do meio ambiente é constante; nesse caso a equação é de variáveis separáveis
onde  é a temperatura inicial. A temperatura do objeto aproxima-se assimptoticamente à temperatura do meio.[2]

Resolvendo a equação do calor utilizando séries de Fourier[editar | editar código-fonte]

Disposição física idealizada para a condução de calor em uma haste com condições de contorno homogêneas.
A seguinte técnica de solução para a equação do calor seguinte foi proposta por Joseph Fourier em seu ensaio Théorie analytique de la chaleur, publicado em 1822. Considere-se a equação do calor para uma variável espacial. Isto poderia ser usado para modelar a condução de calor em uma barra. A equação é
onde u = u(xt) é uma função de duas variáveis x e t. Aqui
  • x é a variável espacial, então x ∈ [0,L], onde L é o comprimento da barra.
  • t é a variável tempo, então t ≥ 0.
Assume-se a condição inicial
onde a função f é dada e as condições de contorno
.
Tenta-se encontrar uma solução de (1) que não é identicamente zero que satisfaça as condições de contorno (3) mas com a seguinte propriedade: u é um produto em que a dependência u em xt é separada, que é:
Esta solução técnica é chamada separação de variáveis. Substituindo u novamente na equação (1),
Dado que o lado direito depende somente de x e que o lado esquerdo somente de t, ambos os lados são iguais a algum valor constante − λ. Então:
e
Apresentam-se agora soluções para (6) para valores de λ ≤ 0 que não podem ocorrer:
  1. Supondo-se que λ > 0. Então existem números reais BC tais que
    De (3) tem-se
    e pontanto B = 0 = C o que implica que u é identicamente 0.
  2. Supondo-se que λ = 0. Então existem números reais B e C tais que
    Da equação (3) conclui-se da mesma maneira que em (1) que u é identicamente 0.
  3. Portanto, deve ser o caso em que λ < 0. Então existem números reais ABC tais que
    e
    De (3) tem-se C = 0 e que para algum inteiro positivo n,
Isso resolve a equação do calor, no caso especial que a dependência de u tem a forma especial (4).
Em geral, a soma de soluções para (1) as quais satisfazem as condições de contorno (3) também satisfazem (1) e (3). Pode-se mostrar que a solução para (1), (2) e (3) é dada por
onde

Generalizando a solução técnica[editar | editar código-fonte]

A técnica de solução utilizada acima pode ser estendida para muitos outros tipos de equações. A ideia é que o operador uxx sem nenhuma condição de fronteira pode ser representado em termos de seus autovetores. Isso naturalmente leva a uma das ideias mais básicas da teoria espectral de operador autoadjunto linear.
Considere o operador linear Δ u = ux x. A sequencia infinita de funções
para n ≥ 1 são autovetores de Δ. De fato,
Além disso, qualquer autovetor f de Δ com condições de fronteira f(0)=f(L)=0 é da forma en para algum n ≥ 1. As funções en para n ≥ 1 formam uma sequência ortonormal com respeito a certo produto interno no espaço de funções reais em [0, L]. Ou seja
Finalmente, a sequência {en}n ∈ N gera um denso subespaço linear de L2(0, L). Isso mostra que diagonalizamos o operador Δ.













teoria da relatividade categorial Graceli

ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D











NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].